Problem with smoke - how to reduce?

citizens. Public transport, by comparison, becomes increasingly uneconomic with lower population densities. Hence cars tend to dominate in rural and suburban environments with public economic gains. The automobile industry, ma

Dodane: 31-08-2016 14:55
Problem with smoke - how to reduce? oil for Mazda

Car issue - public benefits

In countries deprived from wide door-to-door public transport and with low density, such as Australia, the automobile plays an important role on the mobility of citizens. Public transport, by comparison, becomes increasingly uneconomic with lower population densities. Hence cars tend to dominate in rural and suburban environments with public economic gains.

The automobile industry, mainly in the beginning of the 20th century when the high motorization rates were not an issue, had also an important public role, which was the creation of jobs. In 1907, 45,000 cars were produced in The United States, but 28 years later in 1935 3,971,000 were produced, nearly 100 times as many. This increase in production required a large, new work force. In 1913 13,623 people worked at Ford Motor Company, but by 1915 18,028 people worked there.10 Bradford DeLong, author of The Roaring Twenties, tells us that, "Many more lined up outside the Ford factory for chances to work at what appeared to them to be (and, for those who did not mind the pace of the assembly line much, was) an incredible boondoggle of a job.10" There was a surge in the need for workers at big, new high-technology companies such as Ford. Employment largely increased.

Źródło: https://en.wikipedia.org/wiki/Economics_of_car_use


Hybrid - some facts about Environmental issue

The hybrid vehicle typically achieves greater fuel economy and lower emissions than conventional internal combustion engine vehicles (ICEVs), resulting in fewer emissions being generated. These savings are primarily achieved by three elements of a typical hybrid design:

Relying on both the engine and the electric motors for peak power needs, resulting in a smaller engine size more for average usage rather than peak power usage. A smaller engine can have less internal losses and lower weight.
Having significant battery storage capacity to store and reuse recaptured energy, especially in stop-and-go traffic typical of the city driving cycle.
Recapturing significant amounts of energy during braking that are normally wasted as heat. This regenerative braking reduces vehicle speed by converting some of its kinetic energy into electricity, depending upon the power rating of the motor/generator;
Other techniques that are not necessarily 'hybrid' features, but that are frequently found on hybrid vehicles include:

Using Atkinson cycle engines instead of Otto cycle engines for improved fuel economy.
Shutting down the engine during traffic stops or while coasting or during other idle periods.
Improving aerodynamics; (part of the reason that SUVs get such bad fuel economy is the drag on the car. A box shaped car or truck has to exert more force to move through the air causing more stress on the engine making it work harder). Improving the shape and aerodynamics of a car is a good way to help better the fuel economy and also improve vehicle handling at the same time.
Using low rolling resistance tires (tires were often made to give a quiet, smooth ride, high grip, etc., but efficiency was a lower priority). Tires cause mechanical drag, once again making the engine work harder, consuming more fuel. Hybrid cars may use special tires that are more inflated than regular tires and stiffer or by choice of carcass structure and rubber compound have lower rolling resistance while retaining acceptable grip, and so improving fuel economy whatever the power source.
Powering the a/c, power steering, and other auxiliary pumps electrically as and when needed; this reduces mechanical losses when compared with driving them continuously with traditional engine belts.
These features make a hybrid vehicle particularly efficient for city traffic where there are frequent stops, coasting and idling periods. In addition noise emissions are reduced, particularly at idling and low operating speeds, in comparison to conventional engine vehicles. For continuous high speed highway use these features are much less useful in reducing emissions.


Źródło: https://en.wikipedia.org/wiki/Hybrid_vehicle#Environmental_issues


The six-stroke engine

Five-stroke engine

In 1879, Nikolaus Otto manufactured and sold a double expansion engine (the double and triple expansion principles had ample usage in steam engines), with two small cylinders at both sides of a low-pressure larger cylinder, where a second expansion of exhaust stroke gas took place; the owner returned it, alleging poor performance. In 1906, the concept was incorporated in a car built by EHV (Eisenhuth Horseless Vehicle Company) CT, USA;22 and in the 21st century Ilmor designed and successfully tested a 5-stroke double expansion internal combustion engine, with high power output and low SFC (Specific Fuel Consumption).23
Six-stroke engine

The six-stroke engine was invented in 1883. Four kinds of six-stroke use a regular piston in a regular cylinder (Griffin six-stroke, Bajulaz six-stroke, Velozeta six-stroke and Crower six-stroke), firing every three crankshaft revolutions. The systems capture the wasted heat of the four-stroke Otto cycle with an injection of air or water.

The Beare Head and "piston charger" engines operate as opposed-piston engines, two pistons in a single cylinder, firing every two revolutions rather more like a regular four-stroke.

Źródło: https://en.wikipedia.org/wiki/Internal_combustion_engine



© 2019 http://projektwww.net.pl/